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We study the four-point dynamic susceptibility �4�t� obtained from Brownian dynamics computer simula-
tions of the Kob-Andersen Lennard-Jones mixture. We compare the results of the simulations with qualitative
predictions of the mode-coupling theory. In addition, we test an estimate of the four-point susceptibility
recently proposed by Berthier et al. �Science 310, 1797 �2005��.
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I. INTRODUCTION

The origin of the extreme slowing down of liquids’ dy-
namics upon approaching the glass transition and the very
nature of this transition are still hotly debated despite many
experimental, simulational, and theoretical studies performed
in the last two decades �1�. One of the fundamental difficul-
ties is that the slowing down appeared to be a local, small
scale phenomenon, which is not accompanied by a growing
correlation length. No long-range correlations have ever
been found in any static quantity upon approaching the glass
transition. The attention has recently shifted to dynamic cor-
relations �2�, and there is evidence that there is a dynamic
correlation length that slowly grows upon approaching the
glass transition. Unfortunately, this dynamic correlation
length cannot be easily obtained from experimental data.

The dynamic correlation length is often obtained from the
four-point dynamic susceptibility �4�t�. This susceptibility is
related to a space integral of a four-point density correlation
function that quantifies correlations between relaxation pro-
cesses at different points in space. It is assumed that the
increase of the dynamic susceptibility signals the growth of
the range of the correlations between relaxation processes.
Furthermore, the four-point dynamic susceptibility can be
used to discriminate between different theoretical approaches
to glassy dynamics. For example, in a recent paper �3�,
Toninelli et al. discussed predictions for �4�t� obtained from
various theoretical approaches to glassy dynamics and com-
pared these predictions with two different simulations of ato-
mistic models of glass-forming liquids.

A problem with the four-point susceptibility is that it is
difficult to extract from experiments. This problem has been
addressed in another recent paper �4�. Berthier et al. argued
that the four-point susceptibility can be estimated using de-
rivatives of an intermediate scattering function with respect
to thermodynamic parameters such as temperature or density.
Since the intermediate scattering function can be easily ob-
tained from experiments, Ref. �4� introduced a way to ex-
perimentally investigate the existence of a growing correla-
tion length.

The goal of this contribution is twofold. First, we analyze
the four-point susceptibility of the Kob-Andersen �5�
Lennard-Jones binary mixture undergoing Brownian dynam-
ics. Second, we test the approximate estimate for the four-
point susceptibility proposed by Berthier et al. �4�.

The paper is organized as follows. In Sec. II we briefly
review the details of the simulation; in Sec. III we define the
four-point susceptibility and analyze the simulation results

for this quantity; in Sec. IV we compare the four-point sus-
ceptibility obtained directly from computer simulations to
the approximate expression derived by Berthier et al., and in
Sec. V we discuss our findings.

II. SIMULATION DETAILS

We simulated a binary mixture that was introduced by
Kob and Andersen which consists of NA=800 particles of
type A and NB=200 particles of type B. The interaction po-
tential is V���r�=4�������� /r�12− ���� /r�6�, where � ,�
� �A ,B�, �AA=1.0, �AA=1.0, �AB=1.5, �AB=0.8, �BB=0.5,
and �BB=0.88. The interaction potential was cut off at
2.5���. We used a cubic simulation cell with the box length
of 9.4�AA with periodic boundary conditions.

We performed Brownian dynamics simulations. The equa-
tion of motion for the position of the ith particle of type �,
r�i

�, is

r�̇i
� =

1

�0
F� i

� + �� i�t� , �1�

where �0 is the friction coefficient of an isolated particle,

�0=1.0, and F� i
� is the force acting on the ith particle of type

�,

F� i
� = − �i

��
j

�
�=1

2

V����r�i
� − r� j

��� �2�

with �i
� being the gradient operator with respect to r�i

� �note
that the term with �=� and i= j has to be excluded from the
double sum in Eq. �2��. In Eq. �1� the random noise �� i sat-
isfies the fluctuation-dissipation theorem

	�� i�t��� j�t��
 = 2D0��t − t���ij1 . �3�

Here D0 is the diffusion coefficient of an isolated particle,
D0=kBT /�0, where kB is Boltzmann’s constant. Furthermore,
in Eq. �3�, 1 is the unit tensor. The equations of motion
�1�–�3� allow for diffusive motion of the center of mass, thus
all the results will be presented relative to the center of mass
�i.e., momentary positions of all the particles are always rela-
tive to the momentary position of the center of mass �6��.
The results are presented in terms of the reduced units with
�AA, �AA, �AA /kB, and �AA

2 �0 /�AA being the units of length,
energy, temperature, and time, respectively. In these units the
short-time self-diffusion coefficient is proportional to the
temperature, thus the time is rescaled to a reduced time equal
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to tD0 /�AA
2 to facilitate comparisons with theoretical ap-

proaches that often assume temperature-independent short-
time dynamics.

The equations of motion were solved using a Heun algo-
rithm with a small time step of 5	10−5. We simulated a
broad range of temperatures 0.44
T
5.0. Here we present
results for the following temperatures: T=0.45, 0.47, 0.50,
0.55, 0.60, 0.65, 0.80, and 1.0. We ran equilibration runs and
4–6 production runs. The equilibration runs were typically
twice to four times shorter than the production runs, and the
latter were up to 1.2	109 time steps long for the lowest
temperature discussed here, T=0.45. The results presented
are averages over the production runs.

III. FOUR-POINT DYNAMIC SUSCEPTIBILITY

In the context of the dynamics of supercooled liquids, the
four-point susceptibility has been introduced by Glotzer and
collaborators �7�. The four-point susceptibility that we dis-
cuss in this paper is slightly different from that defined in
Refs. �7�. We consider here the susceptibility that was exten-
sively analyzed by Toninelli et al. �3�, which is defined as the
variance of the fluctuations of the self-intermediate scattering
function.

We start with the definition of the self-intermediate scat-
tering function, Fs�k ; t�,

Fs�k;t� =� 1

N
�

i

cos k� · �r�i�t� − r�i�0��� . �4�

Next, we define the fluctuation of the instantaneous value of
the scattering function, �Fs�k� ; t�,

�Fs�k� ;t� =
1

N
�

i

cos k� · �r�i�t� − r�i�0�� − Fs�k;t� . �5�

The four-point susceptibility �4�t� is then defined as

�4�t� = N	�Fs�k� ;t��Fs�k� ;t�
 . �6�

The four-point susceptibility depends on the wave vector k�
�and it is sometimes denoted by �k��t��. This wave vector is
customarily fixed at the position of the maximum of the
static structure factor �8�.

The system considered in this paper is a two-component
mixture, thus, instead of one self-intermediate scattering
function Fs�k ; t�, we could introduce two different scattering
functions involving particles A and B. All the results pre-
sented in this paper concern the A particles only, thus, e.g.,
sums in Eqs. �4� and �5� run only over the A particles. Since
we are not presenting any results for the B particles, we do
not introduce additional subscripts or superscripts indicating
particle labels. The magnitude of the wave vector k� is fixed
at the position of the maximum of the partial structure factor
of the A particles, �k��=7.25.

The mode-coupling theory of the glass transition was for-
mulated by Götze and collaborators for Newtonian systems
�9�, and was later extended by Szamel and Löwen to Brown-
ian systems �10�. The theory makes predictions for the self-
intermediate and collective intermediate scattering functions.

Biroli and Bouchaud �11� recently argued that the mode-
coupling theory could be understood as a dynamic mean-
field theory, and that the usual mode-coupling equations are
saddle-point equations obtained from an action functional.
This new interpretation made it possible to calculate fluctua-
tions of the order parameter �i.e., fluctuations of a two-point
dynamic correlation function� from the inverse of the second
derivative of the action functional. The details of the calcu-
lation have not been published, but the main predictions have
already been discussed and compared with Newtonian dy-
namics simulations �3�. According to Biroli and Bouchaud,
on the � relaxation time scale the four-point susceptibility
grows with time as a power law, �4�t�� t�, with exponents
equal to the standard mode coupling exponents a and b in the
early and late � regime, respectively. Furthermore, �4�t�
reaches its maximum value �4�t*� on the time scale of the �
relaxation time t*�, and the maximum value diverges
upon approaching the mode coupling temperature �4�t*�
� �T−Tc�−�1 with �1=1.

The authors of Refs. �3,4� emphasized that these predic-
tions are valid for Newtonian systems in the microcanonical
�NVE� ensemble and hinted that they may be different in the
canonical �NVT� ensemble.1 We present results obtained
from Brownian dynamics simulations. In such simulations
constant temperature is maintained automatically by the
equations of motion. Thus, in principle it is not clear whether
the predictions of Biroli and Bouchaud �11� are relevant for
our simulation results. However, there are subtle theoretical
arguments that suggest that the reverse is true �12�. In addi-
tion, at the level of the mode coupling equations, there is no
difference between Newtonian systems in the NVE or NVT
ensemble, and Brownian systems �beyond the microscopic
time scale, i.e., on the time scales of the � relaxation and
longer� �10�. These reasons encouraged us to compare our
results obtained from Brownian dynamics simulations to the
predictions of Biroli and Bouchaud �11�.

In Fig. 1 we show the general shape of the four-point
susceptibility �4�t� for several temperatures. The time depen-

1Ensemble dependence of the four-point susceptibility has also
been discussed in the appendix of the cond-mat report �8�.

FIG. 1. Time dependence of the four-point susceptibility �4�t�
plotted vs tD0 /�2 for T=1.0, 0.80, 0.60, 0.55, 0.50, 0.47, and 0.45
�left to right�.
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dence of �4�t� is similar to that obtained for Newtonian sys-
tems �see Figs. 4 and 5 of Ref. �3��. In particular, it can be
argued that there is power-law-like growth in time of the
four-point susceptibility as it approaches its maximum value.
This power-law-like dependence will be further analyzed at
the end of this section.

In Fig. 2 we present the results of some quantitative
analysis of �4�t�. First, in Fig. 2�a� we show the temperature

dependence of its maximum value �4�t*�. We plot the maxi-
mum value versus �= �T−Tc� /Tc where Tc=0.435 is the stan-
dard value of the mode coupling temperature for the Kob-
Andersen Lennard-Jones binary mixture �5�. In an
intermediate range of temperatures, �4�t*� grows as a power
law with decreasing �T−Tc� /Tc, �4�t*���−�1. The exponent
obtained from the fit, �1=0.995±0.05, is very close to the
theoretical prediction of Biroli and Bouchaud, �1

th=1. It
should be noted that the range of reduced temperatures for
which the power-law dependence of �4�t*� is observed coin-
cides with the range of reduced temperatures for which
mode-coupling theory was found to correctly describe the
time evolution of the self-intermediate scattering function
and the mean-square displacement �13�. In Fig. 2�b� we com-
pare the temperature dependence of the time at which �4�t�
reaches its maximum value t* with that of the � relaxation
time �. The latter time is defined as the time at which the
self-intermediate scattering function decays to e−1 of its ini-
tial value Fs�q ,��=e−1. We find that t* and � are very close
and have the same temperature dependence. In particular, in
the same intermediate range of temperatures these times
grow according to power laws with decreasing �T−Tc� /Tc,

t*��−�*
, ���−�. The exponents obtained from the fits, �*

=2.27±0.04 and �=2.31±0.02 are very close. The numerical
solution of the mode-coupling equations predicts a slightly
higher value of the scaling exponent for �, �th=2.46 �13�.
Finally, in Fig. 2�c� we plot �4�t*� vs t*. We find that slight
deviations from power laws that are visible in Figs. 2�a� and
2�b� are magnified in Fig. 2�c�. Nevertheless, we can still
fit a power law �4�t*�� �t*�1/�2 with the exponent �2

=2.31±0.21.
In Fig. 3 we address the question of the power-law depen-

dence of the four-point susceptibility on time. Instead of
trying to fit power laws to �4�t� over some specific time
intervals, we have numerically calculated the derivative
of ln �4�t� with respect to ln t, d ln �4�t� /d ln t
= �t /�4�t��d�4�t� /dt. For any time interval over which �4�t�
depends on t in a power-law fashion, d ln �4�t� /d ln t should
have a constant value �a plateau�. On the basis of the predic-
tions of Ref. �11� we expect two different plateaus in our
data. A plateau in the early-� regime and another one in the

FIG. 2. �a� Temperature dependence of the maximum value of
the four-point susceptibility: �4�t*� plotted vs �= �T−Tc� /Tc. The
solid line is the power-law fit �4�t*���−�1 with �1=0.995. �b� Tem-
perature dependence of the time at which �4�t� reaches its maxi-
mum value, t* �circles�, and the � relaxation time, � �squares�.
Both times are plotted vs �= �T−Tc� /Tc. The solid line and the
dashed line are power-law fits t*��−�*

with �*=2.27 and ���−�

with �=2.31, respectively. �c� The maximum value of the four-point
susceptibility �4�t*� plotted vs t*. The solid line is the power-law fit
�4�t*�� �t*�1/�2 with �2=2.31.

FIG. 3. Derivative of ln �4�t� with respect to ln t,
d ln �4�t� /d ln t= �t /�4�t��d�4�t� /dt, plotted vs t / t* for T=0.45,
0.47, 0.50, and 0.55 �left to right�.
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late-� regime, i.e., on approaching the maximum of �4�t�
�additional plateaus are predicted for shorter times, and we
do not analyze them here�. However, the simulations agree
with mode-coupling predictions only over a restricted range
of temperatures. It is not clear whether these two time scales
are well separated over this temperature range, thus it is not
clear if we could see two different plateaus.

Indeed, Fig. 3 does not show well developed plateaus.
However, we notice that �4�t� grows with t with an exponent
of approximately b=0.8 upon approaching its maximum for
all temperatures. This exponent is comparable to the expo-
nents obtained from Newtonian dynamics simulations �3�. It
is quite a bit higher than the exponent obtained from the
mode coupling theory bth=0.62 �14�. Additionally, it seems
that the time scale on which the exponent b=0.8 is observed,
scales with the time at which �4�t� reaches its maximum
value t* rather than with the characteristic time of the �
relaxation � �note that as we show in Fig. 2�b�, t* has the
same temperature dependence as the � relaxation time ��.

IV. TEST OF THE ESTIMATE OF THE FOUR-POINT
SUSCEPTIBILITY PROPOSED BY BERTHIER et al.

The four-point susceptibility can be easily obtained from
computer simulations, but it is not readily determined from
experiments. To address this problem, Berthier et al. �4� pro-
posed an approximate estimate for the four-point susceptibil-
ity in terms of the derivative of the self-intermediate scatter-
ing function with respect to temperature �T�t�,

�T�t� =
�Fs�k;t�

�T
. �7�

The starting point of their argument was a fluctuation-
dissipation relation �Eq. �2� of Ref. �4��. If we naively
adopted this relation to our system �i.e., Brownian dynamics,
NVT ensemble� we would get

kBT2�T�t� = 	�Fs�k� ;t��V�0�
 . �8�

Here �V�t� denotes the instantaneous fluctuation of the total
potential energy,

V�t� = �
i,j

��
��

V����r�i
��t� − r� j

��t��� , �9�

�V�t� = V�t� − 	V�t�
 . �10�

The derivative with respect to the temperature in Eqs. �7� and
�8� and in the remainder of this section have to be calculated
while keeping the short-time diffusion coefficient D0 con-
stant since our short-time diffusion coefficient is proportional
to the temperature.

The main analytical result obtained by Berthier et al. was
an exact lower bound for �4�t� in terms of �T�t� �Eq. �5� of
Ref. �4��. Naively applying this result to our Brownian sys-
tem we would get

�4�t� �
kB

cV
potT

2�T
2�t� . �11�

Here cV
pot is the potential contribution to the constant volume

specific heat per particle.

Berthier et al. found that the difference between the right
and left sides of relation �11� diminishes with decreasing
temperature. On this basis, they proposed using the right-
hand side of Eq. �11� as an approximate estimate for the
four-point susceptibility. Furthermore, they showed that this
estimate can be easily calculated using either experimental or
simulational results for the self-intermediate scattering func-
tion.

Both the fluctuation-dissipation relation and the bound de-
rived by Berthier et al. are valid only if the equations of
motion do not involve the temperature. The only place where
the temperature can enter is the initial condition, which is
given by the canonical distribution. This is true neither for
the usual NVT computer simulations, where the temperature
enters into the equations of motion via a thermostat, nor for
our Brownian dynamics simulations, where the temperature
enters via the noise strength. Thus we have no arguments in
favor of either the fluctuation-dissipation relation �8� or the
bound �11� for our system. In fact, we show explicitly in Fig.
4 that the relation �8� is violated in Brownian systems. On
the other hand, we do not have strong numerical evidence for
the violation of the inequality �11�. Figure 5�c� suggests that
this inequality is violated, but the extent of the violation is
smaller than the error bars.

We should mention that there is a related, exact bound for
the four-point susceptibility that follows from the Cauchy-
Schwarz inequality �see footnote 22 of Ref. �4��:

�4�t� �
	�Fs�k� ;t��V�0�
2

kBT2cV
pot . �12�

However, as we show in Fig. 5, this bound does not lead to a
useful estimate for the four-point susceptibility.

Berthier et al. also gave a different, general argument
leading to an estimate for the four-point susceptibility in
terms of the right-hand side of inequality �11�. This argument
can be easily adopted for our system. If we assume that the
main source of fluctuations of the instantaneous expression
for the scattering function is the potential energy, we get

�Fs�k� ;t� �
�Fs�k;t�

�T

�V�0�
NcV

pot . �13�

Equation �13� leads immediately to

�4�t� �
kB

cV
potT

2�T
2�t� . �14�

In Fig. 5 we show the time dependence of both sides of
the relation �14� at three representative temperatures. While
the approximation �14� is inaccurate, it becomes better, espe-
cially near the maximum value of �4�t�, when the tempera-
ture approaches the mode-coupling temperature.

Figure 6 compares the temperature dependence of the
maximum value of the right-hand side of the relation �14� to
the temperature dependence of the maximum value of the
four-point susceptibility. The difference between the two di-
minishes with decreasing temperature. However, it is clear
that the temperature dependence of these quantities is differ-
ent. In particular, one should be cautious when using the
temperature dependence of the estimate �14� to obtain the
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temperature dependence of the dynamic correlation length, at
least for temperatures above the mode-coupling temperature.

Finally, Fig. 7 compares the derivative of the logarithm of
the four-point susceptibility, ln �4�t�, with respect to the
logarithm of time, ln t and the derivative of the logarithm of
the estimate �14�, ln kBT2�T

2�t� /cV
pot=2 ln �T�t�+const., with

respect to ln t. We find that the estimate �14� approaches its
maximum value with a power-law exponent that is approxi-
mately equal to one and thus somewhat higher than the
power-law exponent describing �4�t�’s approach to its maxi-
mum value. Moreover, comparing Figs. 7�a� and 7�b� we find
that the difference between exponents obtained from the es-
timate �14� and from the four-point susceptibility does not
seem to diminish with decreasing temperature.

V. CONCLUSIONS

We performed a quantitative analysis of the four-point
susceptibility �4�t� of the Kob-Andersen Lennard-Jones bi-
nary mixture. We compared the results of Brownian dynam-
ics computer simulations to predictions obtained from a re-
cent reformulation of the mode-coupling theory. We did not
compare computer simulation results to other approaches to
glassy dynamics �e.g., to the predictions obtained using fa-
cilitated kinetic Ising models �15,16�� because these other
approaches are more concerned with a temperature range
lower than the one accessible in our simulations.

We found that some of the mode-coupling predictions
agree with our simulation results. Most notably, the height of

FIG. 4. Comparison of kBT2�T�t�=kBT2�F�k ; t� /�T �closed
circles� with 	�Fs�k� ; t��V�0�
 �open squares� at three representative
temperatures: �a� T=1.00, �b� T=0.55, and �c� T=0.45.

FIG. 5. Comparison of �4�t� �open circles� with kBT2�T
2�t� /cV

pot

�closed circles� and 	�Fs�k� ; t��V�0�
2 / �kBT2cV
pot� �open squares� at

three representative temperatures: �a� T=1.00, �b� T=0.55, and �c�
T=0.45.
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the maximum of the four-point susceptibility grows upon
approaching the mode-coupling temperature from above in
the way predicted by the theory. Moreover, the time at which
�4�t� reaches its maximum value has the same temperature
dependence as the � relaxation time. For each of these two
quantities, which are derived from a four-point function, the
power-law dependence on �T−Tc� /Tc is obeyed over the
same temperature range as for quantities derived from two-
point functions, e.g., the � relaxation time and the self-
diffusion coefficient.

On the other hand, we found some disagreement with the
theory with regard to the power-law dependence of �4�t� on
time. We found that upon approaching its maximum value,
�4�t� grows with time with an effective exponent of about
0.8. This exponent is quite a bit larger than the exponent
predicted by the theory. It should be recalled that the expo-
nent predicted by the theory is in turn larger than the one
obtained by fitting a formula inspired by the mode-coupling
theory to the �two-point� self-intermediate scattering func-
tion. Hence, our understanding of the connection between
the time dependence of the four-point susceptibility and the
time dependence of two-point functions seems incomplete.

Finally, we tested the approximate estimate of the four-
point susceptibility in terms of the temperature derivative of
the self-intermediate scattering function. We found that the
estimate becomes accurate around the peak of �4�t� upon
approaching the mode-coupling temperature. However, the

temperature dependence of the maximum value of �4�t� is
weaker than that of the approximate estimate. Moreover, the
time dependence of �4�t� differs from that of the estimate
even near the mode-coupling temperature.

We should emphasize that all our computer simulation
results were obtained using Brownian dynamics �and, there-
fore, NVT ensemble�. It is possible that results obtained from
Newtonian dynamics computer simulations would agree bet-
ter �or worse� with theoretical predictions.
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